Unit - 3: Linear Motion Study Guide

- 1. Know your key terms! Distance, Displacement, Speed, Instantaneous Speed, Velocity, Acceleration, Deceleration, Free Fall, Rate, Vector, Reference Point, Slope.
- 2. Look over your Linear Motion Notes and know how to use the kinematics equations! I will supply these on the test for you so just understand which equation you would use and how to use it.

Horizontal Motion: $v = \underline{d}$ d = vt $t = \underline{d}$ $\Delta v = v_f - v_o$ $a = \underline{\Delta v}$

Vertical Motion: v = at v = gt $d=\frac{1}{2}gt^2$ $t = \sqrt{\frac{2d}{g}}$

3. What is the average speed of a dog that runs 50m in 10s?

$$V = \frac{d}{t} \qquad \frac{50m}{10s} = \left[\frac{5m}{s}\right]$$

4. A skateboarder traveling 2m/s increases to 4m/s in 4s. What is the skateboarder's acceleration?

$$\alpha = \frac{\Delta V}{t}$$

$$\frac{4m/s - 2m/s}{4s} = \frac{2m/s}{4s} = [.5m/s^2]$$

5. An apple falls from a tree a distance of 30m. How long does it take to reach the ground?

$$t = \sqrt{\frac{2d}{9}}$$
 $\sqrt{\frac{2(30m)}{10m/s^2}}$ $\sqrt{6} = 2.45$

6. A ball is dropped from rest, after 4s how far has it fallen?

7. How are distance - time graphs different from velocity - time graphs? What does the slope of a line on each graph tell you? What does a horizontal line on each graph tell you? Be able to read the graphs and determine the slopes of the lines. Some sample graphs are below:

SIT SLOPE = ACCELEDATION