16. A force of 40 N is applied to an 8 kg ball. What is the acceleration of the cart? (a=F/m)	
$\frac{40N}{8Kg} = 5m/s^2$	
17. A kid on a bike speeds away from rest to 10 m/s in 10 s. What is the kid's acceleration? (a = $\Delta V/t$)	
$\frac{10m/s - 0m/s}{10s} = \frac{10m/s}{10s} = 1m/s^{2}$	
18. What is the density of a metal block that has a mass of 25 g and and volume of 10 cm³?	
$D = \frac{m}{\sqrt{10 \text{ cm}^3}} = 2.5 \text{g/cm}^3$	
Lab Safety and Equipment: 19. What are volumes of liquid measured with in the laboratory? How do you measure the volume of an	
irregularly shaped object? What do we use balances for?	
- GRADUATED CYLINDER	
- USE THE WATER DISPLACEMENT METHOD - BALANCES ARE USED TO MEASURE MASS	
20. What are three safety rules to follow while working on a science lab?	
A. READ LAB PROCEDURE + FOLLOW DIRECTIONS. B. NO. KATING / N. LUKING IN THE LAB.	
B. NO EATING / DEINKING IN THE LAB. C. WEAR SAFETY EQUIPMENT APPROPRIATE FOR LAB SITUATION	15.
Distance-Time and Speed-Time Graphs: distance versus time speed	
6 7 6 5 4 7 G S S S S S S S S S S S S S S S S S S	
time (s)	
21. What do the slopes on each graph tell you? 5/7: A > RAPID ACCEUDATED	
DIT: A -> SPEKDING AWAY B-7 CONSTANT SPEKD	
B-D NOT MOVING	
C→ SPEED ING BACK TOWARDS C→ DECENTRATION START D→ GRADUAL ACKTEMATION	,
22. On a distance - time graph, what type of line would indicate that an object is accelerating? Draw it on	
the distance-time graph. A CWLVED LINE.	
23. Scientific Laws: State each law and give an example (description or picture)	
Boyle's Law: PRESSURE 1 VOLUME 1 @ CONSTANT TEMP.	
(HELLUM BALLOON RISING/BUBBLES UNDERWATER)	
Charles's Law: TEMP. 1 VOLUME 1 @ CONSTANT PUESSONE	
23. Scientific Laws: State each law and give an example (description of picture) Boyle's Law: PRESSURE 1 VOLUME 1 @ CONSTANT TEMP. (HELLUM BALLOON RISING / BUBBLES UNDERWARD) Charles's Law: TEMP. 1 VOLUME 1 @ CONSTANT PURSSURE (LEAUING A BASKETBALL OUT ON A COLD NIGHT))